Chronic sustained and intermittent hypoxia reduce function of ATP-sensitive potassium channels in nucleus of the solitary tract.
نویسندگان
چکیده
Activation of neuronal ATP-sensitive potassium (K(ATP)) channels is an important mechanism that protects neurons and conserves neural function during hypoxia. We investigated hypoxia (bath gassed with 95% N(2)-5% CO(2) vs. 95% O(2)-5% CO(2) in control)-induced changes in K(ATP) current in second-order neurons of peripheral chemoreceptors in the nucleus of the solitary tract (NTS). Hypoxia-induced K(ATP) currents were compared between normoxic (Norm) rats and rats exposed to 1 wk of either chronic sustained hypoxia (CSH) or chronic intermittent hypoxia (CIH). Whole cell recordings of NTS second-order neurons identified after 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA) labeling of the carotid bodies were obtained in a brain stem slice. In Norm cells (n = 9), hypoxia (3 min) induced an outward current of 12.7 +/- 1.1 pA with a reversal potential of -73 +/- 2 mV. This current was completely blocked by the K(ATP) channel blocker tolbutamide (100 muM). Bath application of the K(ATP) channel opener diazoxide (200 muM, 3 min) evoked an outward current of 21.8 +/- 5.8 pA (n = 6). Hypoxia elicited a significantly smaller outward current in both CSH (5.9 +/- 1.4 pA, n = 11; P < 0.01) and CIH (6.8 +/- 1.7 pA, n = 6; P < 0.05) neurons. Diazoxide elicited a significantly smaller outward current in CSH (3.9 +/- 1.0 pA, n = 5; P < 0.05) and CIH (2.9 +/- 0.9 pA, n = 3; P < 0.05) neurons. Western blot analysis showed reduced levels of K(ATP) potassium channel subunits Kir6.1 and Kir6.2 in the NTS from CSH and CIH rats. These results suggest that hypoxia activates K(ATP) channels in NTS neurons receiving monosynaptic chemoreceptor afferent inputs. Chronic exposure to either sustained or intermittent hypoxia reduces K(ATP) channel function in NTS neurons. This may represent a neuronal adaptation that preserves neuronal excitability in crucial relay neurons in peripheral chemoreflex pathways.
منابع مشابه
Chronic Sustained and Intermittent Hypoxia Reduce the Function of ATP-Sensitive Potassium Channels in the Nucleus of the Solitary Tract
Activation of neuronal ATP-sensitive potassium (K ATP) channels is an important mechanism that protects neurons and conserves neural function during hypoxia. We investigated hypoxia (bath gassed with 95% N 2 /5% CO 2 vs. 95% O 2 /5% CO 2 in control) induced changes in K ATP current in second-order neurons of peripheral chemoreceptors in the nucleus of the solitary tract (NTS). Hypoxia-induced K...
متن کاملAnti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels
Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...
متن کاملAnti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels
Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...
متن کاملATP-sensitive Potassium Channels and L-type Calcium Channels are Involved in Morphine-induced Hyperalgesia after Nociceptive Sensitization in Mice
Introduction: We investigated the role of ATP-sensitive potassium channels and L-type calcium channels in morphine-induced hyperalgesia after nociceptive sensitization. Methods: We used a hotplate apparatus to assess pain behavior in male NMRI mice. Nociceptive sensitization was induced by three days injection of morphine and five days of drug free. On day 9 of the schedule, pain behavior te...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 5 شماره
صفحات -
تاریخ انتشار 2008